
The R Programs to accompany Fundamental
Probability: A Computational Approach
General Remarks

As discussed in the Preface to the book, the popularity, functionality, and ease-of-use
of Matlab made it a natural choice for the coding of the programming examples. The R
language has all of these features, but it is also free, with an ever-growing user base in
academia and industry. As such, we decided to provide the reader the option of which
to use. The book’s web page provides the R translations of virtually all of the Matlab
programs and functions used in the book. For example, the function on page 58, Listing
2.3, called ”threegirls” is the Matlab file threegirls.m, and the R file threegirls.r.

Also included are the handful of short code segments throughout the book. They are
in the files called pageXX.m and pageXX.r, where XX denotes the page in the book it
appears on.

While the two languages, Matlab and R, have important similarities, there are enough
differences in syntax, built-in functions, and data structures that make a translation exer-
cise of all the functions rather time-consuming and occasionally (pleasantly) challenging.
I wish to thank Sergey Goriatchev, who has competently and singlehandedly completed
this sizable task and written the remainder of this document.

R Intallation and Documentation
R is a computer language and an environment developed primarily for statistical

computing. The R language is similar to the S language, developed at Bell Laboratories.
R’s similarity to S allows one to migrate to the commercially supported S-Plus software if
desired. Like Matlab, R is a very flexible system for data analysis that can be extended
as needed with the help of numerous additional packages. These packages are being
constantly developed and maintained by the diverse, wide-spread, and very helpful R–
user community. Many, but not all, of these packages reside on the R homepage, and can
be easily installed (and updated) from the main GUI. There are several hundred packages
available (a number of them are automatically included in the base distribution of R),
offering state-of-the-art abilities for free.

On the R homepage, CRAN, (http://cran.r-project.org/) there are instructions
for downloading a base distribution of R for your operating system (Windows, Mac,
Linux, or Unix), a description of the different add-on packages, and various manuals for
the R language.

1

http://cran.r-project.org/�

There is quite an abundance of documentation on R available at CRAN. The student
is advised to download the official manual An Introduction to R. Under Documentati-
on on the CRAN homepage, the user may click on Contributed to browse through R-user
supplied documentation and tutorials. There is a very wide choice of manuals in different
languages. Out of personal experience, the tutorials Using R for Data Analysis and
Graphics - Introduction, Examples and Commentary by John Maindonald and
Simple R by John Versani are very comprehensive and purposeful introductions to R.
Practical Regression and Anova using R by Julian Faraway is a fabulous tutorial
on fitting and diagnosing linear models in R. In fact, all three of these tutorials have been
turned into textbooks. For econometrics, there is a concise but very good tutorial Eco-
nometrics in R by Grant Farnsworth, and the forthcoming book by Christian Kleiber
and Achim Zeileis, Applied Econometrics with R. There are also several reference
cards available for downloading, in particular R reference card by Tom Short.

R is not only a professional statistical system, it also provides very powerful, highly
flexible and fully programmable graphics utilities. A recent addition to the growing li-
terature on R is the excellent book R Graphics written by one of the main developers
of R graphics systems, Paul Murrell.

Once the base distribution of R has been installed, the R program files (scripts) we
provide can be downloaded and placed into the R working directory. To find out what
the working directory is, type getwd() at the R prompt. To test any function, first open
a script in R GUI, then load the function code by selecting all the code in the script with
Ctrl+A and running it at the R prompt with Ctrl+R.

Remarks regarding coding in Matlab and R
Below are a few remarks about language differences that came to light during the

recoding of functions written in Matlab into R. Also, specific use of code is often explained
in the program scripts themselves. The explanations are presented within the code as
comments that begin with # sign, or at the end of each particular script as Notes. To
read these explanations, open a script inside R GUI.

Because of the specifics of each programming language, R and Matlab code for each
particular program are sometimes not “one-to-one”, in the sense that the only difference
between the programs is the cosmetic syntax of the languages. For example, in program
rowofbirthdays.r, the R and Matlab code are not one-to-one, because R allows “back-
ward” unincremented looping, while Matlab does not(explained in more detail in one of
the remarks below).

Another issue which has influenced the R code is that we tried to make the output
of the R program resemble, as close as reasonably possible, that of the corresponding

2

Matlab program. This was done mainly for “education purposes”, though in practice, an
R-user would just use the default style of output in R.

The new user should keep in mind that it takes time to learn the intricacies and
specifics of a programming language. When going through the programs, keep in mind
that our code was not always designed to be optimally efficient or elegant, and the user
is recommended to construct alternative programs which improve upon ours by using
more advanced features of R.

• A very useful function in R is RSiteSearch(“...”), where instead of the dots you
type your key word of interest, or a phrase. For this function to work you have
to be connected to the internet, because it searches online mail lists and displays
documents, R-help files, and R function descriptions containing the specified key
words.

• Because the R language has a reserved, built-in function “c”, the translation of the
Matlab program c.m for computing the binomial coefficient (“n choose k ”) is called
mychoose.r.

• The Matlab user-defined function permvec(N), which is used in, among others,
permvecsim.m is replaced in R with built-in function sample(N,N).

• Matlab function rand(’seed’, 999) is similar to R function set.seed(999) (see
egg.r).

• In Matlab, if, say, m = 5, code (0:m+2) produces a sequence from 0 to 7, while in
R it produces a sequence from 2 to 7, unless the R code is written (0:(m+2)) (see
couplesaroundtable.r).

• Matlab-type of indexing, for example M[m:m+1,], will not work in R. You have to
write something like M[c(m,m+1),].

• In Matlab, for x a positive number, log(-x) returns a complex number, while in
R, log(-x) produces NaN.

• Histograms are plotted differently in Matlab and R. The reason for this is the
coding of bins. In Matlab, histograms are plotted with the following code:

[histcount, histgrd] = hist(Y,X)

where X is a vector. It returns the distribution of Y among bins with centers
specified by X. In R, one writes

3

g <- hist(Y,breaks=...,)

and this returns an object g of class “histogram”, and the argument breaks=...
in the function definition could be, among other things, a number of breaks or a
vector giving the breakpoints between histogram cells. To get the same number
of elements in a bin in Matlab and in R, the breaks in the R histogram function
must be adjusted to match those of Matlab. How this is done is shown in function
egg.r. The Matlab code

[histcount, histgrd] = hist(needed, range(needed)+1);
h1 = bar(histgrd, histcount);

is coded in R as

g<-hist(needed,breaks=seq(min(needed),max(needed),
by=((max(needed)-min(needed))/((max(needed)-min(needed))+1))),
plot=FALSE)

names(g$counts)<-round(g$mids, digits=0)
a<-barplot(g$counts, ...)

The object g returned by the R function hist is a list with a number of components
that can be accessed using dollar sign notation. That way we extract g$mids which
corresponds to the above histgrd in the Matlab code, and g$counts, which cor-
responds to histcount in the Matlab code.

• Tabulating functions differ in Matlab and R. Matlab function tabulate(x) returns
a matrix, table. The first column of table contains the unique values of x. The
second is the number of instances of each value. The last column contains the
percentage of each value. If the elements of x are non-negative integers, then the
output includes 0 counts for any integers that are between 1 and max(x) but do not
appear in x. The R function table(x) produces an object of class “table”, which
is, in principle, a named vector of instances of unique(!) values of x. The names are
the unique values of x. When percentages are needed, (especially when these are
going to be plotted and the plots in Matlab and R should be similar), they should
be produced by hand, and the code for this can be seen, for instance, in banach.r
or surrounded.r. When plotting is involved, to replicate the output of the Matlab
tabulating function, we basically create a new, expanded named vector which also
includes 0 counts. Then we create a new vector containing percentage of each value

4

by dividing the newly created expanded named vector by the sum of instances of
all values.

Further, in the Matlab program rowofbirthdays.m, the code snippet

tt = tabulate(bday);
days = find($tt(:,2)>0);

returns days, while the direct recoding in R would return counts. To get days in R
we need to take the name attribute of the table and convert it to integers, like

days <- as.integer(names(table(days)))

• Interquartile range functions in Matlab and R produce different results because
they are based on different ways of calculating quantiles. R contains nine different
quantile algorithms (type ?quantile at R prompt to read about them). The default
for R IQR() function is algorithm type 7, while in Matlab, the R-equivalent of type
5 is used. In R, to get results similar to those of Matlab, one has to code the IQR()
function using the quantile() function. This is done in program kerngau.r as

quantile(x, 0.75, type=5) - quantile(x, 0.25, type=5)

• The Matlab function unidrnd(X, A, B) produces an array A×B of random num-
bers chosen uniformly from set (1,2,3. . .X). This is achieved in R with function
sample(X, Z, replace=TRUE) which produces an i.i.d. sample (...replace=TRUE)
of size Z (=sum(A × B)) taken from set (1,2,3. . .X). Similarly, Matlab function
binornd(1,p,A,1) is replicated in R with rbinom(kids, 1,p).

• Matlab code of type

if nargin < 3, kids = 7; end

is not necessary in R, as function argument defaults can be given in the function
specification (for instance, see program threegirls.r).

• In R, the output of the function is the last command evaluated. In Matlab a
function can have several outputs. If several outputs are required in R, one has to
create a list of outputs and put it as the last command in function code. For a clear
example of how this can be done, check and run the code for program holst.r and
negbin3.r.

5

• In R, numeric values are coerced to strings automatically, where needed. For an
example, compare code in functions leuk.m and leuk.r. In Matlab you write

text(pos1, pos2, int2str(s), ’fontsize’, 18, ’Color’, [0 1 0])

while in R, this is written as

text(pos1,pos2,labels=s, col="royalblue")

• R implements negative indexing, which means that command x[-1] returns all but
the first value of vector x. How negative indexing may simplify Matlab code can
be observed in program hypergeometricsim.r.

• Backward looping works in R but not in Matlab (though, of course, something
like for j=5:-1:1... would work). For example, compare programs gani.m and
gani.r. In Matlab, the for-loop for j=2:m... does not increment if m < 2. The
execution jumps to

b(i) = any(q==m)

bypassing the above–mentioned for–loop. In R, loop for(j in 2:m)... works even
when m < 2, but then matrix dimensions are exceeded, an NA value is returned,
and logical comparison fails. We rewrite Matlab code in R by including the if–else
loop

if(m<2)
if(sum(q==m)>0) {b(i)=1}
else {"for-loop and b(i) evaluation"}

6

